A Krylov Subspace Algorithm for Evaluating the Φ-functions Appearing in Exponential Integrators

نویسندگان

  • JITSE NIESEN
  • Jitse Niesen
چکیده

We develop an algorithm for computing the solution of a large system of linear ordinary differential equations (ODEs) with polynomial inhomogeneity. This is equivalent to computing the action of a certain matrix function on the vector representing the initial condition. The matrix function is a linear combination of the matrix exponential and other functions related to the exponential (the so-called φ-functions). Such computations are the major computational burden in the implementation of exponential integrators, which can solve general ODEs. Our approach is to compute the action of the matrix function by constructing a Krylov subspace using Arnoldi or Lanczos iteration and projecting the function on this subspace. This is combined with time-stepping to prevent the Krylov subspace from growing too large. The algorithm is fully adaptive: it varies both the size of the time steps and the dimension of the Krylov subspace to reach the required accuracy with minimal effort. We implement this algorithm in the matlab function phipm and we give instructions on how to obtain and use this function. Various numerical experiments show that the phipm function is often significantly more efficient than the state-of-the-art.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Moment-Matching Arnoldi Iteration for Linear Combinations of φ Functions

The action of the matrix exponential and related φ functions on vectors plays an important role in the application of exponential integrators to ordinary differential equations. For the efficient evaluation of linear combinations of such actions we consider a new Krylov subspace algorithm. By employing Cauchy’s integral formula an error representation of the numerical approximation is given. Th...

متن کامل

Uniform Approximation of φ-Functions in Exponential Integrators by a Rational Krylov Subspace Method with Simple Poles

We consider the approximation of the matrix φ-functions that appear in exponential integrators for stiff systems of differential equations. For stiff systems, the field-of-values of the occurring matrices is large and lies somewhere in the left complex half-plane. In order to obtain an efficient method uniformly for all matrices with a field-of-values in the left complex half-plane, we consider...

متن کامل

New Adaptive Exponential Propagation Iterative Methods of Runge-Kutta Type

Exponential integrators have emerged as an efficient alternative to commonly used time-integrators. Recently a new class of exponential propagation iterative methods of Runge-Kutta type (EPIRK) has been introduced [30]. These schemes possess a structure that makes them computationally advantageous compared to other exponential methods. In addition, the general EPIRK formulation offers flexibili...

متن کامل

A short course on exponential integrators

This paper contains a short course on the construction, analysis , and implementation of exponential integrators for time dependent partial differential equations. A much more detailed recent review can be found in Hochbruck and Ostermann (2010). Here, we restrict ourselves to one-step methods for autonomous problems. A basic principle for the construction of exponential integra-tors is the lin...

متن کامل

Convergence Analysis of an Extended Krylov Subspace Method for the Approximation of Operator Functions in Exponential Integrators

We analyze the convergence of an extended Krylov subspace method for the approximation of operator functions that appear in exponential integrators. For operators, the size of the polynomial part of the extended Krylov subspace is restricted according to the smoothness of the initial data. This restriction for the continuous operator has a significant influence on the approximation of matrix fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009